I first met Whitney Miller when she was a reporter at WCPO-TV in Cincinnati, right as the pandemic was cranking up. Whitney worked with my wife, Lucy, and Whitney was really into making anything and everything.
She’d made her own dining table with the help of some friends. And she’s made almost everything else in her life – her clothes, curtains, sweatshirts for her friends, masks for people she knew, stickers for everyone. The woman just makes and makes.
She wanted to get better at woodworking, so she took a Dutch Tool Chest class with Megan. Whitney hadn’t done much hand joinery, but she has what we call “good hands.” Put a tool in her hands, and she will make it work. And work well.
During the class, Megan came to me and said: “Whitney’s form isn’t classical, but you can’t argue with the results.”
Her dovetails were fantastic. Her entire chest was crisp. Whitney might be a natural, or she might also be someone who works with her hands all the time and can make them do her bidding. (I vote for the latter.)
When we built a workbench for the Henry Boyd exhibit at the Cincinnati History Museum, Whitney led the way on its construction. She is simply an outstanding craftswoman – no matter what the tools she is using.
And her energy and enthusiasm for making things eclipses most of the goober YouTubers.
So when we thought about making a video on building a Swedish tool chest, we decided to make it for beginners and have it hosted by someone who wasn’t your typical over-trained and textbook-perfect woodworker. Someone who could get it done and make it look awesome (look at the dang photos) and wasn’t an intimidating host.
Whitney was my first choice.
We’ve been posting clips from her video on Instagram this month, and the response has been both great and depressing. Some people get it. Look at this bada$$ person putting this chest together, even without the classical education and the requisite stick up their butt. Awesome.
And others who make it about gender or race or denigrating Whitney’s work.
What does Whitney think of all this? She generally kills people with kindness, but I think you should look at her work. She might not hold a dovetail saw like you. Or plane boards like you. Or drive a chisel with the confidence of someone who does it for a living. But she knows what she is doing. And she knows how to get it done.
And if there’s not room in your world for people like that, please find another world.
Last November, the Folger Shakespeare Library in Washington, D.C., received a printing press similar to the type used to print Shakespeare’s First Folios. The printing press was to be part of the Folger’s recent expansion of its exhibit space.
Although Joseph Moxon’s “Mechanick Exercises: Or, the Doctrine of Handy-works: Applied to the Art of Printing” was published six decades after the First Folios were printed, Alan May, an experienced hand at building historic presses, used Moxon’s descriptions as a guide to build the Folger’s press. He also traveled from England to Washington to assemble it.
May notes that Moxon mentions the old-fashioned presses used in England, but is really pushing, and provides much more details on, a new-fashioned press from the Netherlands. Here’s the passage written by Moxon:
Plates 3 and 4, below, show the old-fashioned press (left) and the new-fashioned press (right).
A link to an article about the Folger’s printing press, including May’s approach to building the press and a short video, can be found here.
The Folger has digitized copies of the plays from the First Folio. I pulled up the opening page to “The Tragedie of Julius Caesar,” one of Shakespeare’s plays that mentions a carpenter. As the play begins, the citizens of Rome are taking a day off to celebrate the return of a triumphant Julius Caesar. Two tribunes, Marullus and Flavius, encounter and scold two “certaine Commoners” for not working and not wearing the clothing that signifies their professions. A cobbler accompanying the carpenter, responds to the tribunes’ challenge with some sauciness.
As for Julius Caesar, we know his fate. Don’t we, Marcus Junius Brutus?
We’ve had a couple people ask what tools they need to make the cherry tool chest built by Whitney Miller in “Make a Swedish Tool Chest” (available at introductory pricing of $35 until Aug. 26) So, below is a list of every tool Whitney picks up on camera. To those you could add a jointer, planer and table saw if you’re going to prep your own material with the aid of power tools – though you could also carefully choose 3/4″- or 7/8″-thick S4S stock at the lumberyard, and glue up panels from that, resulting in minimal prep.
Cutting or marking gauge (Whitney is using a Tite-Mark cutting gauge)
Dovetail template (Whitey is using a 1:4 Crucible Dovetail Template, which matches the angles on the paper template included in the video)
0.5 mm pencil (Whitney is using…several – any will do, but my current faves are Graphgear and Ohto)
Marking knife (Whitney is using a vintage Blue Spruce knife)
Dovetail saw (Whitney is using a Lie-Nielsen non-tapered DT saw)
Coping saw (Whitney is using a Knew Concepts 6-1/2″ saw with an aftermarket handle by Elkhorn Tools, which is no longer)
The coping saw blade is a Pégas 18tpi skip tooth blade (which cuts slowly but cleanly in this 7/8″-thick cherry; the 10 tpi blade would also work, though it would leave a more ragged cut)
Bevel-edge chisels (Whitney is using a 1/2″ Lie-Nielsen socket chisel)
Crosscut saw (Whitney is using Chris’s vintage Wheeler Madden & Clemson)
Mallet for dovetail chopping (Whitney is using a Blue Spruce 16-ou. round mallet)
Smooth plane (Whitney is using a Lie-Nielsen No. 3 in bronze)
12″ adjustable square (Whitney is using a Starrett)
24″ adjustable square – not strictly necessary (Whitney is using a Starrett)
Block plane (Whitney is using a Lie-Nielsen No. 60-1/2)
Jack plane (Whitney is using a vintage Stanley No. 5; I think it’s a Type 11…for the tool nerds among us)
Glue brush (Whitney is using a No. 2 Torrington glue brush. Along a Dixie cup that contains a few ounces of Piggly No Wiggly glue. For the drawers, we used Titebond Original PVA for its quicker setup time.)
Rectangular mallet (In my brief appearance to help knock the case together, I grabbed the Blue Spruce 24-ou. rectangular mallet)
Clamps (we used Bessey K-bodies, aka parallel-jaw clamps)
Paraffin wax (I believe the brand is Gulf)
Drill/driver (Whitney grabbed a 12-volt Milwaukee for light-duty needs, and a 20-volt DeWalt for heavier-duty needs )
Drill bits (we swear by HSS Lipped Imperial Brad-Point Drills from Lee Valley – so I assume Whitney used these)
Countersink (Ours are Insty-Bits)
Slot screwdriver (Whitney used a Grace Gunsmith-style Slot Screwdriver)
16-ounce hammer (Whitney is using a vintage Plumb “Autograph”)
Rabbet plane (Whitney is using a Veritas Skew Rabbet plane, which technically is a moving fillister plane)
6″ adjustable square (Whitney is using a Starrett)
Plough plane (Whitney is using a vintage Record No. 043)
Small router plane (Whitney is using a Lie-Nielsen No. 271 open mouth)
Centering punch, not strictly necessary…but awfully fun to use (Whitney is using a Starrett No. 819 Automatic Center Punch)
A pocketnife and needle-nose pliers (while installing the traditional ring pulls – I have no idea what brands)
Also shown throughout are a Crucible Lump Hammer, Crucible Holdfasts and a Benchcrafted Moxon Vise. The bench is Christopher’s “Anarchist’s Workbench.”
I think I got them all – if I missed any, my apologies (and I’m sure someone will let me know).
Hey! Two of my chairmaking friends, en and Jim Crammond, are putting on a Gibson chair class in Michigan starting Sept. 30. They are both great people and chairmakers. If you’ve wanted to build a Gibson chair, this is a great opportunity. Details are below.
— Christopher Schwarz
Join us for an immersive chair making class where you will build an Irish Gibson chair, a vernacular chair form that is known for its comfort and relative simplicity to build; it’s a great first chair or 12th chair! The fact that these simple and distinct chairs were made by farmers and non-professional woodworkers, with limited tools, and with materials that were easily accessible makes this chair a joy to make. In this class you’ll have the opportunity to personalize this chair (vernacular forms invite creative input) as well as pursue tools and methods that suit your setup at home.
Class Details:
Dates: September 30th to October 4th, 2024
Location: Monroe, Michigan (details upon registration)
Cost: $1,000 (Includes cost for workshop, supplies, and lunch). Deposit of $200 to confirm registration. Full payment is due upon arrival to the workshop.
Lunch will be provided daily
What You Will Learn: In this intensive five-day workshop, you will delve into the craft of chair making with two chair makers with a combined history of 25 years in the craft. Whether you’re a novice or seasoned woodworker, this class will teach you the fundamentals of chairmaking and set you up to continue chairmaking at home.
Tools: Learn to use the froe, lathe, drawknife, shaving horse, bench plane and other tools.
Design: Understand concepts such as rake, splay and sight lines that influence chair design and comfort.
Techniques: steam bending, splitting and riving, staked tenon joinery and more, adapting techniques to suit your setup at home.
Reserve Your Spot Today: Spots are very limited (only five!) so sign up early.
In this book, Cianci (aka The Saw Wright) teaches you the fundamentals of maintaining backsaws and handsaws: how to file and joint your saws with the correct rake, fleam and pitch to keep them cutting sharp. You’ll also learn how to deal with saw teeth that are in good shape but dull, plus how to successfully doctor teeth that have been abused.
Plus, Matt shows you how to identify and restore vintage saws (i.e. is that yard sale box lot a good buy?) – and basic sawsmithing – how to hammer out a bent blade, and how to re-set the spine on a backsaw.
Do you remember sitting in junior high geometry class and trying your best to stay awake? Me too.
While we don’t have to talk about the Pythagorean theorem in this chapter, it is important to understand the basic shapes and angles related to saw teeth. We’ll also cover basic terminology. Grab your highlighter.
Hand Saw Anatomy Western-style hand saws come in many forms, but the two most common to woodworking are the handsaw and the backsaw. A hand saw (two separate words) refers to any saw worked by hand power. This includes large two-person timber saws for felling and bucking trees to pit saws for sawing boards from a log, and even tiny keyhole saws and dovetail saws for fine joinery with all types in between. Hand saws can have a thin, narrow blade tensioned in a wood or metal frame, or the blade can be unrestrained and of sufficient gauge to remain stiff and resist buckling in use. A handsaw (one word) is a particular form of hand saw that includes a wooden handle with closed grip on one end of an unrestrained blade, which is used for making straight, dimensioning cuts in boards of all kinds. Handsaws are identified in size by the length of the toothed edge of their blade, which can range from 12″ to 30″. The most common size is 26″, which is the prototypical carpenter’s saw.
A backsaw is a hand saw with a thinner blade and an applied metal rib along its top edge to provide stiffness in use. It has an open- or closed-grip handle ,and is used for making precise joinery or fine dimensioning cuts in wooden components of all kinds. Backsaws are also identified by the length of the toothed edge of their blade and typically range in size from 6″ to 20″ , with 12″ being the most common. A special variety of backsaws, called miter box saws, are designed to be used in manufactured miter boxes, and can be up to 30″ in length.
There is common language used to identify the parts of both handsaws and backsaws that you should understand before you learn about saw teeth. The thin steel body of the saw that contains the teeth is referred to as the blade. The toothed edge of the blade is called the toothline, and the opposite edge is called the back. The other major component of a handsaw or backsaw is the handle, which is self explanatory and usually made of wood. The two ends of the toothed blade are distinct. The end with the handle is called the heel; the opposite end is called the toe. Unique to backsaws is the metal reinforcing rib, called the back, along the top edge of the blade. These can be made of iron, steel or brass.
Parts of Teeth The teeth of Western saws are shaped like triangles, and each part of these teeth have a specific name and function. Understanding these elements is the first step in learning to sharpen your saws. The point is the acute apex of the tooth where the wood fibers are first cut. Depending on how you file a particular saw, these points can have different geometric distinctions and cut wood in different ways. The face of the tooth is the side of the triangle that first contacts the work when the saw is in use. Because Western-style saws cut on the push stroke, these faces are always on the toe side of the toothline. Logically, then, the opposing side of the tooth is called the back. The site where the back and face meet is called the gullet.
In use, all four parts of the tooth work together to cut a kerf into a piece of wood. The kerf is the empty space created by the saw as it cuts. Here’s how it happens:
The acute point of each tooth is pushed down into the wood as the saw is thrust forward. As the point penetrates the surface of the wood it cuts and lifts up a tiny chip of wood.
This chip then slides up the face of the tooth as the saw moves forward.
As the chip reaches the gullet it breaks apart and collects with other chips in the gullet.
As the tooth exits the work on the backside of the kerf, the chips of wood fall out of the gullets. The saw is drawn back and the process repeats.
For conceptual purposes, it has long been suggested that the cutting action of saw teeth is similar to the cutting action of many other edge tools, like chisels and knives. And while this is true for an individual saw tooth, it does not give the full picture. Planes, chisels, knives, axes and all other edge tools possess a single cutting edge, whereas a typical handsaw can have more than 200. For a saw to cut well, each of these teeth must not only be sharp, but also must be uniform and harmonized with all neighboring teeth. Uniformity in partnership with sharpness is the goal for saw teeth. This is why saw sharpening can be so challenging for even the most experienced woodworkers. The efficient and accurate function of the saw is not solely dependent on the quality and geometry of a single edge, but on the quality and uniformity of many edges in relation to each other.
Now that we have defined the parts of a saw’s teeth and how they cut in general, let’s look more closely at how changing the size, shape and geometry of the teeth can make them better suited to different kinds of work.
Tooth Spacing Tooth spacing determines the size of a saw’s teeth and is measured by the number of teeth a saw has within one linear inch. There are actually two different but often confused units of measurement common to hand saws for tooth spacing, and they are points per inch (ppi) and teeth per inch (tpi). They are, in fact, not the same unit. On handsaws, tooth spacing was traditionally stamped onto the heel of the saw on the medallion side of the blade right below the handle. Backsaws had no such marking.
To identify the ppi tooth spacing of any saw, take a rule and place it on the toothline of the saw. Line up the 1″ mark on the rule with one of the tooth points at the heel of the saw. Begin to count the number of tooth points starting with the point aligned with the 1″ mark and progressing up to and including the point under the 2″ mark. This count is the ppi tooth spacing of the saw.
To measure the tpi tooth spacing of a saw use the same rule, but this time line up the 1″ mark with the gullet of a tooth at the heel. Now count the number of full saw teeth (gullet, back, point and face) from one gullet to the next until you reach the gullet under the 2″ mark. This count is the tpi spacing of the saw. If you completed this task correctly, you should arrive at a tpi spacing that is one less than your ppi measurement. This means that a points-per-inch measurement of a saw will always be one greater than the teeth-per-inch unit. Represented in an equation: ppi = tpi +1. So, a 6 ppi saw is not the same as a 6 tpi saw. A 6 ppi saw is equal to a 5 tpi saw, and a 6 tpi saw is in fact equal to a 7 ppi saw. Got it? Good. Of note, I only use ppi when describing tooth spacing.
If you followed the steps above to identify a particular saw’s tooth spacing, and you are finding that the points (if you are using ppi) or the gullets (if you are using tpi) are not lining up with the exact inch marks on your rule there could be a couple of reasons why. Historically, full-size handsaws were commonly available in half-point increments in coarser sizes. So that means that 6-1/2, 5-1/2, 4-1/2 and 3-1/2 ppi saws are commonly found. In fact, 5-1/2-point ripsaws are about as common as any other ripsaw spacing in the wild. A discrepancy in measurement could also mean that your saw has morphed over years of careless filing into an odd spacing. This is especially common on backsaws with very small teeth that are easy to misfile. For handsaws, look for the heel stamp (noted above) to confirm the original spacing. Also, always measure teeth at the heel of a handsaw because ripsaws were commonly toothed one point finer at their toe to allow for easier starting of the cut. This means that a 6-point ripsaw has 6 ppi spacing at its heel and 7 ppi at its toe.
So why are these distinctions about tooth spacing so important? Because more than any other element, tooth spacing affects how a saw will cut, and unlike the other geometric features of saw teeth we will discuss later in this chapter, tooth spacing is not typically changed once it is established. Tooth spacing determines how large or small the teeth are on a saw, which in turn determines how large or small a bite of wood each tooth will take. This is due to the distance from one tooth to the next and the resultant gullet volume the teeth create. In use, a saw tooth will continue cutting chips of wood as long as its point is able to reach the bottom of the kerf. Once the gullet in front of a point fills with chips, it is overcome and can no longer effectively bite into the wood. So a saw with a greater amount of space between each tooth point, and hence a greater chip capacity in its gullet, can go on cutting and creating chips longer than a relatively smaller tooth. But this speed comes at a cost. Larger teeth may cut faster, but they leave a rougher surface on the wood and are not as inclined to the precise work of joinery. Conversely, fine-toothed saws for joinery sacrifice speed, but they allow a smooth, even stroke, whose tiny teeth gently nibble away at the wood to cut a finer line.